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Pattern formation on a sphere
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Pattern formation on the surface of a sphere is described by equations involving interactions of spherical
harmonics of degrek Whenl is even, the leading-order equations are determined uniquely by the symmetry,
regardless of the physical context. Existence and stability results are found for @yeéal = 12. Using either
a variational or eigenvalue criterion, the preferred solution has icosahedral symmetry 6od =10, and
I=12. Numerical simulations of a model pattern-forming equation are in agreement with these theoretical
predictions near onset and show more complex patterns further from onset.
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I. INTRODUCTION resolved by nonlinear terms. The cases of odd and egea
quite different{1,10]. For oddl, there are no quadratic terms
Pattern formation with spherical geometry arises naturallyin the bifurcation equations and so all bifurcations are of the
in a large number of physical and biological applications.pitchfork type. For everl, quadratic terms are present, so
Convection patterns in a spherical shell are relevant to corthat all bifurcations are of the transcritical type; furthermore,
tinental drift driven by the fluid motion within the Earth’s there is a unique quadratic term that is consistent with the
mantle. This problem has been studied analyticflfyand  spherical symmetry10] (up to an arbitrary amplitude scal-
numerically[2,3] and a variety of solutions have been found, ing), so the behavior is uniquely determined. For this reason,
including some patterns with tetrahedral, cubic and icosaheanly the case of evehis considered here.
dral symmetry. Another physical application is the buckling Near a bifurcation point, the physical variable, for ex-
of a sphere subjected to a uniform external pres$drg. ample, the temperature fluctuation in convection, is written
Biological applications include the growth of tumours, whereas
a growing ball of cells may remain spherical or may bifur- |
cate to a nonspherical shaf@®7], and the problem of mor- m
phogenesis in embryos, considered in the classic paper of W= sz—I Zn(DY(0,9), @
Turing [8]. Reaction-diffusion equations have been solved
numerically on the surface of a sphdig9], motivated by  where z, is real, z,, is complex for m#0, and z_,,
the formation of structure in viruses and tumours, generating- (—1)"z* , since W is real. All the modesz,, have the
essentially the same cubic and icosahedral patterns as fouRgme growth rata.. Since there is a unique quadratic term
in the convection simulations. that is consistent with spherical symmefy], this term can
This universality of patterns across different applicationspe optained by computingv? and using orthogonality to

of the bifurcation equations and the existence and stability ofye system of P+ 1 equations,

solutions with a particular symmetry is determinéd a

sense made more precise belopurely by the fact that a . ' '

bifurcation from spherical symmetry occurs. Considerable Zm=AZn,t B Z E c(ml,mz,m)zmlzmz, 2
advances have been made in the mathematical theory of bi- my =1 mp=-l

furcation with symmetry in the general case and in the spe- A
cific case of spherical symmetfyt0—13. This paper pro- wherec(my,mz,m) =0 if m; +m,#m, and

vides further results on the existence and stability of patterns, v [2m

and highlights a preference for icosahedral patterns. c(my,m,,m)= fo fo YllelmzY,m* sinfd¢pdo  (3)

IIl. DERIVATION OF EQUATIONS FROM SYMMETRY if m;+m,=m and g is an arbitrary scaling parameter. The

At a bifurcation from spherical symmetry, the eigenfunc- coefficientsc(m;,m,,m) are proportional to the Clebsch-
tions are the spherical harmonivd'(6, ) of degreel, for ~ Gordan coefficients
—I<ms=I. TheY" are proportional to expfi) and satisfy
Y, M= (—=1)"Y™ . The value of is determined by the prob-
lem; for example, in the case of spherical shell convection, where the constant depends or.
increases as the thickness of the shell decreases. There are
21+ 1 eigenmodes with the same growth rate, so the bifur-
cation equations are of orded 21 and the problem be-
comes increasingly complicated ak increases. The The search for stationary solutions to thet2L equations
(21+1)-fold degeneracy of the linear stability problem is (2) can be simplified by restricting attention to solutions with

c(my,my,m)=a(l,m¢,l,m,|l,m), (4)

Ill. EXISTENCE OF SOLUTIONS

1063-651X/2003/6(8)/0362066)/$20.00 67 036206-1 ©2003 The American Physical Society



P. C. MATTHEWS PHYSICAL REVIEW E67, 036206 (2003

TABLE I. Subgroups ofO(3) for evenl, with corresponding (7). It turns out that these conditions are satisfied for solu-
number of equation® (H). All solutions have an additional point tions with cubic symmetryO for the six cases in which
inversion symmetry{x] denotes the integer part &f D(0)=2, so we may deduce the existence of either one or
three branches of solutions with symmet® for |

GroupH Symmetry  Elements D(H) =12,16,18,20,22,26. Similarly, we expect one or three
0(2) Circle . 1 branches of solutions with symmetryor a further 15 values
| lcosahedron 60 1172+ [1/3]+[1/5] of I, simply by determining from Table | thodefor which
o Cube o 12+ [113]+[1/4] D(H)=2. Extending this argument to the general case, it
- Tetrahedron 12 1112+ 2[1/3] follows from Bezout's theorem that generically, the num-
D Reaul on 1471/ ber of solution branches is odd and less than or equal to
n egularn-gon +[1/n] oD(H) _ 1
Z, Directedn-gon n 1+2[1/n] ’

Demonstrating the existence of solutions with submaxi-
mal symmetry such a§ andD,, is more difficult, since one
a particular symmetry. For example, if all tag are real, the must check carefully that the solutions obtained do not have

solution has a reflection symmetry and the number of equadréater symmetry. For example, fb+=6 andl=10, D(T)
tions is reduced tb+ 1. This symmetry can be described by =2 andD(O)=D(I)=1. Seeking solutions with symmetry
a subgrougH of the original symmetry group of the sphere, 1> the equations have the for(6), (7) but with a reflection
O(3). The subgroups 0f0(3) are summarized in Table I, symmetry so thap=b=r=0. There are three solutions, but
together with the corresponding dimensibigH) of the re- o€ of these has symmet@y and the other two have sym-
stricted system, which can be computed using trace formuMetry a_md are equivalent under rotation. Therefore there is
las. In fact, an additional point inversion symmetry is presenf’© Solution with symmetryf’ for | =6 orl=10, as any such
for all solutions with everi. Since this symmetry is always Solution in fact has symmetr® or I.

present, it need not be explicitly written. The subgroups For solutions with dihedral symmetiy,, D(D,)=2 for
0(2), corresponding to axisymmetric solutiodsiepresent- [/2<n=<I, from Table I. Equation$2) then have the form
ing solutions with icosahedral or dodecahedral symmetry,

and O representing solutions with cubic or octahedral sym- x=\x+Bc(0,0,0x*+2B¢(0,n,n)y?, (8
metry, are maximal, meaning that they are not contained in )

any other subgroup. The tetrahedral subgrdugs a sub- y=Ay-+2Bc(0,n,n)xy, (9)
group of bothl and O, and the dihedral group, is a sub- _ _ _

group of O(2). wherex=z, andy=Re(z,). There is an axisymmetric solu-

In the caseD(H)=1, the existence of solutions can be tion y=0, Xx=—\/5c(0,0,0), and an additional solution
deduced from the equivariant branching lemfid-13,
which states that a branch of solutions with symmety _ A . \?
exists near the bifurcation point. B(H)=1, then Eq.(2) x= 2Bc(0n,n)’ y _4,82c(0,n,n)2
reduces to the single equation

¢(0,0,0
~ 2¢(0n,n)

. provided thatc(0,0,0)/Z2(0,n,n)<1. Using the properties
X=AX+ax, (5  of the Clebsch—Gordan coefficients, it has been shii@h

that this condition is met fon=1 if |=2(mod4), since
¢(0,0,0)£(0J,1) is proportional to ¢ 1)"? multiplied by a
positive number. Further existence results can be obtained
from the properties of the Clebsch-Gordan coefficients. It
can be shown that

where the constaratis in general nonzero, describing a tran-
scritical bifurcation. The application of this resqit1-13
shows that axisymmetric solutiorjsvith symmetry O(2)]
exist for all evenl, solutions with symmetryO exist for |
=4,6,8,10,14, and solutions with symmetryexist for 14

values ofl. c(0l—1)]—1)/c(0),1)=—(1-1)/2,
A similar result for the case whed (H)=2 can be ob-
tained as follows. IID(H)=2, the equations are so thatc(0,0,0)c(0l—1]—1) is negative ifl=0(mod4).
. Similarly,
X=AX+ax?+bxy+cy?, (6)

c(0)—21—-2)/c(0J),1)=(13—612+31—2)/4(21 - 1),

o 2 2

YZAY R QXY @ which is positive forl=6, andc(0,—3,1—3)/c(0/J,l) is
involving six constants, b, c, p, g, r. Multiplying Eq. (6) by proportional to a polynomial ihthat is negative fot>10. It
y, Eq.(7) by x and subtracting yields a cubic equationyéx ~ follows that a solution with symmetnD, exists for |
at a fixed point, which in general has one or three solutions=2(mod4),|=6 [13], a solution with symmetrp, _, exists
Each of these solutions yields a unique solutionX¥@ndy  for |=0(mod4),l=8, a solution with symmetr{p, _, exists
after substitution back into Eq$6) and (7). Generically, for |=2(mod4),/=10, and a solution with symmetiy,_
there are therefore one or three branches of solutions whesxists for |=0(mod4), [=12. The constraints oh arise
D(H)=2. This result requires that certain nondegeneracyrom the possibility of additional symmetry, for example a
conditions are satisfied by the six constants in E§sand  solution with symmetrnyD, may have symmetr®. It can be
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shown that for large, this pattern of existence of solutions
continues, i.e. solutions with symmetiy;_,; exist for |
=2(mod4), and solutions with symmetB); _,; ; exist for

[=0(mod4). Further details of these calculations are given

elsewherd 14].

Stability of solutions is determined by the eigenvalues of

the Jacobian matrix. Earlier work[1,10] has established
that Egs.(2) have a variational structure, so thhfs sym-

metric and hence all eigenvalues are real; furthermore, one o

the eigenvalues is aways equal ta\ and the sum of the
eigenvalues is (2+ 1)\ [10,13. Hence all solutions are un-

stable near the bifurcation. However, there is always a solu-

tion in which, forA<0, one eigenvalue is positive and all
the others are negatiy&0]. This can be regarded as a “pre-

ferred” solution since it can become stable at a saddle-node

bifurcation if higher-order terms are introduced into E2).
Alternatively, a variational formulation can be usgd, in

PHYSICAL REVIEW 67, 036206 (2003

FIG. 1. Possible bifurcation diagram for the cdse6. Solid

which N is maximized for a fixed value of the second—order(daShed lines denote stabléunstablé solution branches, and the

invariant 3! 2: the solution that satisfies this varia-

m=

—Ilzm

tional problem also satisfies the above eigenvalue criterio
[10]. Because of the spherical symmetry, zero eigenvalues

are always present. The solution wi®(2) symmetry has

vertical axis is a qualitative measure of the amplitude of the solu-
jon. The numbers of positive and negative eigenvalues on each
branch are shown.

two zero eigenvalues and all other solutions have three zer® |, S0 onlyDg gives a new solution. For the subgrobyg,

eigenvalues.

IV. SOLUTIONS FOR |=6, 8, 10, AND 12

This section is concerned with calculation of the existence

and stability of stationary solutions of ER) for specific
even values of. For =2 the only solution is the axisym-
metric state, while fol =4 there is an additional solution
with symmetryO that is preferred, according to the varia-
tional or eigenvalue criteriofi,10,13.

For =6, Busse[1] found four solutions, which have
symmetryO(2) (axisymmetrig, | (icosahedragl O (cubic),
and Dg (hexagongl and identified the solution with icosa-

hedral symmetry as the preferred one according to the varia-

D(H)=3 and there are seven solutiofis agreement with
the above formula2M) —1), but these are just copies of the
solutions with symmetryl, O, Dg and O(2). Similarly,
within the four-dimensional space @,, there are 2—1
15 solutions, but explicit computation verifies that there
are no new solutions. Finally, solutions with symmefy,
or no symmetry, can be ruled out since they are nongeneric
[13].

It is straightforward to find the eigenvalues of the 13
X 13 matrixJ for each solution, sincé divides into blocks
that are no larger than>33. The eigenvalues and their mul-
tiplicities are shown in Table Il. For the axisymmetric solu-
tion, the eigenvalues are simply—\ and [1
2¢(0,n,n)/c(0,0,0)]\ forn=1, ... |, with multiplicity 2.

tional principle. These four solutions are guaranteed to exisPn€ €igenvalue has multiplicity 4, sincec(0,2,2)

by the general results above. Aéncreases, it becomes in-

=¢(0,6,6). The other solutions also have eigenvalues with

creasingly difficult to verify that all possible solutions have Nigh multiplicity, up to 5 in the case dt

been obtained. Fdr=6, this can be done by investigating
solutions with symmetnH for all possible subgroupB! in
the ‘lattice’ of subgroups. For the groug3(2), I, and O,
D(H)=1 and so a unique solution is guaranteed. Bgr,

D5, D4, andT, D(H) =2 and solutions can be found in each

case; however, solutions with symmetd, and D5 give
only the solutions with symmetryD and I, respectively,
while solutions with symmetry all have either symmetr®

TABLE Il. Eigenvalues of solutions fot=6, divided by\.
Numbers in parenthesis are multiplicities.

Symmetry Eigenvalues
0(2) -42,-1,02, 52, % @, 5%
| -1,0(3), 11 5, 5 @
0 -21,-413),-1,00,72, 2 0
De - -32,-1,003,8 50, %2©

The solution with symmetry has only one positive eigen-
value for\<0, while all others have at least three. Hence
thel solution can become stable at a saddle-node bifurcation
if cubic terms are included, whereas the other solutions re-
quire more than one bifurcation to become stable. A possible
bifurcation diagram illustrating this scenario is shown in Fig.
1. Note that only a single eigenvalue can change sign at a
saddle-node bifurcation. On this basis, theolution can be
regarded as preferred. This supposition is given strong sup-

F@\ A3X Ah

. ERA Y A
“» \'g’/ g

FIG. 2. Stationary solutions of E¢R) with icosahedral symme-
try for =6, =10, andl =12.
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TABLE lll. Solutions for| =10, with the number of equatiori3(H) and the number of positive eigen-
valuesn+ when\<0.

Symmetry | 0(2) (0] Dg D, Dg Dg Do D, Dy
D(H) 1 1 1 2 2 2 2 2 3 4
n+ 1 7 2 3 9 6 3 8 9 7

port by two recent numerical simulations of reaction- Forl=12, only the solutions with symmeti®(2) andl
diffusion equations on the surface of a sphigt], both of  are guaranteed by the equivariant branching lemma. The
which find a stable solution with icosahedral symmetry forgeneral result above for the caB¢H) =2 shows that there
| =6. This question is examined further in Sec. V below. Theare either one or three solutions with cubic symmeiyy
solution with icosahedral symmetry is shown in Fig. 2. Thisexplicit computation of the coefficients in Eq®) and (7)
solution haszo=— /55, zs=\770/605 and all othez; are  shows that in fact there are three distinct cubic solutions. For
zero. In the example of spherical shell convection, the darkhe other groups wittD(H)=2, solutions with symmetry
regions correspond to either warm rising fluid or cold sinkingDg, Dg, D;o and D44 exist but there are no solutions with
fluid, depending on the sign @ in Eq. (2). symmetryD5 or D,. Solutions with symmetnf were in-
For 1=8, the equivariant branching lemma guaranteesestigated by restricting attention to solutions with symmetry
axisymmetric and cubic solutions, and the general argument3, that are also invariant under two consecutiv® rota-
on solutions with symmetrid,, give a solution with symme- tions about orthogonal axes. The solutions with symmetry
try D. Direct computation reveals that there are also soluand| were found, but also a distinct solution with symmetry
tions with symmetryDg, Ds, D4, andD5. There are no T. Thus,1=12 is the lowest even value dffor which a
solutions with symmetry or T. For | =8 there is a degen- solution with symmetryT exists. A total of 14 solutions were
eracy in the coefficients, withc(0,5,5)=c(0,6,6) and found for |=12; these are listed in Table IV. Again, the
c(1,5,6)=0, these two equations being related by a recursolution with symmetryl is preferred, since it has only one
rence relation of the coefficients. This degeneracy influencegositive eigenvalue fox <0.
the eigenvalues of the solutions. The solutions with symme-
try D, Dg, Ds, Dy, andDB all have seven zero eigenval- V. NUMERICAL SIMULATIONS
ues, one positive eigenvalue and nine negative eigenvalues
for A<0. It would therefore be necessary to include higher This section describes the results of numerical simulations
order terms to determine the preferred solution|fei8. of a model pattern-forming partial differential equation. The
When| =10, solutions of Eq(2) with symmetryO(2), aim of the simulations is to test the hypothesis of the preced-

O, | exist, since these groups haéH)=1. The other gen- iNg section that the solution with only one positive eigen-
eral results above indicate the existence of solutions wittyalue forA <O becomes stable at a saddle-node bifurcation

SymmetryDlo and D81 and nonexistence of a solution with and is the solution observed. The model chosen is a variation

symmetryT. Calculations show that there are also solutions?f the Swift-Hohenberg model,

with symmetryDg, D;, Dg, D4, andDj. These calcula- 5

tions follow the same general method as fer6 and | ow 2\2 .3

=8; for each subgroupl of O(3), D(H) is obtained from at [r = (1475 w+sw'—w? (10
Table | and the reduced setBi{H) equations is solved. For

submaximal subgroups, care must be taken to check wheth@&his equation is widely used as a model for convection and
the solution obtained has greater symmetry thlarfor ex-  other pattern-forming systend5,16. The basic statev
ample, when seeking solutions with symmefy, only the =0 is potentially unstable when the parametelbecomes
solution with symmetny is found. Once a solution has been positive, ands represents the symmetry breaking between the
found, the eigenvalues dfare calculated for the full system inside and outside of the sphere. The growth kate spheri-

of 2I+1 equations. Some of the calculations were carrieccal harmonics of degreleis

out using the symbolic algebra packageprLE. The solu-

tions are listed in Table Ill, with the number of eigenvalues A=r—[1-1(I+1)/R?)?, (11

that are positive whem <0. Thel solution has only one

positive eigenvalue fok <0 and so is regarded as the pre- whereR is the radius of the sphere, so the most unstable
ferred solution. This solution is shown in Fig. 2. mode has degrekif R>=I(I+1), in which case there is

TABLE |V. Solutions forl=12, with the number of equatiori3(H) and the number of positive eigen-
values whem\ <0. Multiple entries in the final row indicate multiple solutions with the same symmetry.

Symmetry | 0(2) o) Dy Dy Dy Dy T Ds Dg D,
D(H) 1 1 2 2 2 2 2 3 3 3 4
n+ 1 7 447 5 9 2 7 10 7 3 910
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SO G

FIG. 3. Numerical solutions of Eq(10) for |=8, with r FIG. 4. Solutions of Eq(10) for | =8, withr=0.2, showing a
=0.15, with symmetnDg (left) andO(2) (right). double-spiral patterfleft) and a tennis ball pattergmight).

_ - ) ) For 1=8, the theoretical results of Sec. IV based on the
instability for r>0. Note that for largd the relationship  quadratic truncation do not give a preferred solution, since

betweenR and| is approximatelyR=1+1/2. the quadratic terms do not resolve the pattern degeneracy in
The simulations use a pseudospectral method, workinghis case. Numerical simulations of Ed.0) with R=8.5, s
with the spectral coefficientg,,(t) defined by =0.2,r=0.1 show a pattern witB¢ (hexagonal symmetry,

with 20 spots on the surface of the sphere. Fe0.15, both
the solution withDg symmetry and the axisymmetric solu-
m tion are stable; these two solutions are shown in Fig. 3. For
Zm(DY(0, ). (12) r=0.2, further stable solutions are found, depending on the
initial conditions. These include, amongst others, a double-
) spiral pattern and a pattern with the symmetry of a tennis ball
The number of modek used is chosen to be at least three g 4). These two solutions do not have the point inversion
times the value of with the maximum growth rate. The gymmetry inherent in all evehstates, and so are composed
linear terms in Eq(10) are obtained simply by multiplying of a3 mix of event and oddr modes.
Z;, by N given by Eq(11), and the nonlinear terms are found  For |=10, simulations withs=0.2, R=10.5, andr
by transforming to a uniformly spaced grid i,) on the  =0.1 generally lead to the solution with icosahedral symme-
surface of the sphere, evaluating andw® and then trans- try shown in Fig. 2. However, a minority of initial conditions
forming back to the spectral coefficients. The transformggive an axisymmetric state, so it appears that both solutions
make use of thesPHEREPACKpackage[17]. The time step- are stable. For largar, many different types of solution are
ping of Eq. (10) is carried out using the exponential time stable. Forr=0.2 these include the axisymmetric state, a
differencing method18], which ensures that the exponential double spiral similar to that of Fig. 4, and a single spiral
growth is handled exactly and allows much larger time stepgattern similar to that described by Zhaegal. [3] in their

than most standard methods. Each simulation employs @imulations of convection in a spherical shell.
Sma"_amp”tude random initial condition. Simulations withs=0.2, R=12.5, and=0.1 (SO that the

To investigate patterns fdr=6, several simulations with Most unstable mode is=12) show either the icosahedral
R=6.5, s=0.2 were carried out. Far=0.1, all random ini- Solution shown in Fig. 2, or the axisymmetric solution, or a
tial conditions lead to a stable solution with icosahedral symsolution with cubic symmetry, shown in Fig. 5, depending on
metry, identical to that shown in Fig. 2. By choosing differ- the initial conditions. Asr is increased, many more stable
ent initial conditions, with particular symmetries, the othersolutions are found, involving different arrangements of me-
three solutions shown in Table Il can be found, but these ar@ndering stripes over the surface of the sphere. These include
all unstable to small perturbations. These results are consig double spiral similar to that found for8 andl =10, and
tent with the bifurcation diagram sketched in Fig. 1, in which@ single spiral, shown in Fig. 5.
the branch of solutions with icosahedral symmetry turns
round at a saddle-node bifurcation, giving a stable branch of
solutions extending into the region whexe-0. This branch ~n conclusion, this work represents a study of the exis-
of solutions can be tracked back numerically into the regionence and stability of solutions for pattern formation on a
wherer <0 (and hencen<0) as far ag = —0.0023, before
the solution collapses to the zero state, indicating that the
saddle-node bifurcation occurs near this point. Wheis
increased to =0.2, random initial conditions lead to either
the icosahedral solution or the axisymmetric state, so both
these solutions are stable, and fot 0.3 most initial condi-
tions give the axisymmetric solution. This transition from an
icosahedral solution with a pattern of spots to an axisymmet-
ric striped pattern asincreases, with an interval of bistabil-
ity, is closely analogous to the transition from hexagonal to
striped patterns in planar pattern formatisee, for example, FIG. 5. Patterns in Eq10) for |=12. Cubic solution (=0.1,
Ref.[16]). left) and spiral solutioni(=0.2, righd.

=L

w=3 3

|
=0 m=—I

VI. CONCLUSIONS
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sphere for all eveh up tol=12. The bifurcation equations, ther from onset. However, these higher-order terms are sys-
to quadratic order, do not depend on the details of the physiem dependent, so other pattern-forming equations may give
cal application. All solutions found in the quadratic trunca- different behavior.

tion are unstable, but a “preferred” solution can be identified The preference for icosahedral patterns is of considerable
using either a variational criterion or, equivalently, by deter-interest, since a very large number of “spherical” viruses are
mining which solution has only one positive eigenvalue. Reknown to have icosahedral structursge, for example, Ref.
markably, forl=6, | =10, andl =12, a solution with icosa- [19]), as first suggested by Crick and Watd@®]. For ex-
hedral symmetry is preferred, according to either theample, the bean pod mosaic virus and bacterioplige74
variational or eigenvalue criterion. These three solutions arboth have the appearance of the6 solution of Fig. 2,
shown in Fig. 2. Numerical simulations of a Swift- while the turnip yellow mosaic virus and bacteriophage MS2
Hohenberg model confirm that these icosahedral patterns aege similar to thd =10 solution, with 32 prominent surface
indeed stabilized by higher-order terms, and show that &atures. A further natural example of icosahedral symmetry
wide variety of more complicated patterns can be stable furis in microorganisms known as radiolafi2al].
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