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Pattern formation on a sphere

P. C. Matthews
School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom

~Received 10 December 2002; published 24 March 2003!

Pattern formation on the surface of a sphere is described by equations involving interactions of spherical
harmonics of degreel. Whenl is even, the leading-order equations are determined uniquely by the symmetry,
regardless of the physical context. Existence and stability results are found for evenl up to l 512. Using either
a variational or eigenvalue criterion, the preferred solution has icosahedral symmetry forl 56, l 510, and
l 512. Numerical simulations of a model pattern-forming equation are in agreement with these theoretical
predictions near onset and show more complex patterns further from onset.
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I. INTRODUCTION

Pattern formation with spherical geometry arises natur
in a large number of physical and biological application
Convection patterns in a spherical shell are relevant to c
tinental drift driven by the fluid motion within the Earth’
mantle. This problem has been studied analytically@1# and
numerically@2,3# and a variety of solutions have been foun
including some patterns with tetrahedral, cubic and icosa
dral symmetry. Another physical application is the buckli
of a sphere subjected to a uniform external pressure@4,5#.
Biological applications include the growth of tumours, whe
a growing ball of cells may remain spherical or may bifu
cate to a nonspherical shape@6,7#, and the problem of mor-
phogenesis in embryos, considered in the classic pape
Turing @8#. Reaction-diffusion equations have been solv
numerically on the surface of a sphere@7,9#, motivated by
the formation of structure in viruses and tumours, genera
essentially the same cubic and icosahedral patterns as f
in the convection simulations.

This universality of patterns across different applicatio
is a direct consequence of the spherical symmetry. The f
of the bifurcation equations and the existence and stabilit
solutions with a particular symmetry is determined~in a
sense made more precise below! purely by the fact that a
bifurcation from spherical symmetry occurs. Considera
advances have been made in the mathematical theory o
furcation with symmetry in the general case and in the s
cific case of spherical symmetry@10–13#. This paper pro-
vides further results on the existence and stability of patte
and highlights a preference for icosahedral patterns.

II. DERIVATION OF EQUATIONS FROM SYMMETRY

At a bifurcation from spherical symmetry, the eigenfun
tions are the spherical harmonicsYl

m(u,f) of degreel, for
2 l<m< l . TheYl

m are proportional to exp(imf) and satisfy
Yl

2m5(21)mYl
m* . The value ofl is determined by the prob

lem; for example, in the case of spherical shell convectiol
increases as the thickness of the shell decreases. Ther
2l 11 eigenmodes with the same growth rate, so the bi
cation equations are of order 2l 11 and the problem be
comes increasingly complicated asl increases. The
(2l 11)-fold degeneracy of the linear stability problem
1063-651X/2003/67~3!/036206~6!/$20.00 67 0362
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resolved by nonlinear terms. The cases of odd and evenl are
quite different@1,10#. For oddl, there are no quadratic term
in the bifurcation equations and so all bifurcations are of
pitchfork type. For evenl, quadratic terms are present, s
that all bifurcations are of the transcritical type; furthermo
there is a unique quadratic term that is consistent with
spherical symmetry@10# ~up to an arbitrary amplitude sca
ing!, so the behavior is uniquely determined. For this reas
only the case of evenl is considered here.

Near a bifurcation point, the physical variable, for e
ample, the temperature fluctuation in convection, is writ
as

W5 (
m52 l

l

zm~ t !Yl
m~u,f!, ~1!

where z0 is real, zm is complex for mÞ0, and z2m

5(21)mzm* , since W is real. All the modeszm have the
same growth ratel. Since there is a unique quadratic ter
that is consistent with spherical symmetry@10#, this term can
be obtained by computingW2 and using orthogonality to
extract the component in the equation forzm . This leads to
the system of 2l 11 equations,

żm5lzm1b (
m152 l

l

(
m252 l

l

c~m1 ,m2 ,m!zm1
zm2

, ~2!

wherec(m1 ,m2 ,m)50 if m11m2Þm, and

c~m1 ,m2 ,m!5E
0

pE
0

2p

Yl
m1Yl

m2Yl
m* sinu df du ~3!

if m11m25m andb is an arbitrary scaling parameter. Th
coefficientsc(m1 ,m2 ,m) are proportional to the Clebsch
Gordan coefficients

c~m1 ,m2 ,m!5a^ l ,m1 ,l ,m2u l ,m&, ~4!

where the constanta depends onl.

III. EXISTENCE OF SOLUTIONS

The search for stationary solutions to the 2l 11 equations
~2! can be simplified by restricting attention to solutions w
©2003 The American Physical Society06-1



u
y

e,
,

m
en
s
p

tr
m

e

n-

n

h
ac

lu-

or

ee

, it
-

l to

xi-

ave

y

t
-

is

-

ined
. It

a

t

P. C. MATTHEWS PHYSICAL REVIEW E67, 036206 ~2003!
a particular symmetry. For example, if all thezm are real, the
solution has a reflection symmetry and the number of eq
tions is reduced tol 11. This symmetry can be described b
a subgroupH of the original symmetry group of the spher
O(3). The subgroups ofO(3) are summarized in Table I
together with the corresponding dimensionD(H) of the re-
stricted system, which can be computed using trace for
las. In fact, an additional point inversion symmetry is pres
for all solutions with evenl. Since this symmetry is alway
present, it need not be explicitly written. The subgrou
O(2), corresponding to axisymmetric solutions,I represent-
ing solutions with icosahedral or dodecahedral symme
and O representing solutions with cubic or octahedral sy
metry, are maximal, meaning that they are not contained
any other subgroup. The tetrahedral subgroupT is a sub-
group of bothI andO, and the dihedral groupDn is a sub-
group ofO(2).

In the caseD(H)51, the existence of solutions can b
deduced from the equivariant branching lemma@11–13#,
which states that a branch of solutions with symmetryH
exists near the bifurcation point. IfD(H)51, then Eq.~2!
reduces to the single equation

ẋ5lx1ax2, ~5!

where the constanta is in general nonzero, describing a tra
scritical bifurcation. The application of this result@11–13#
shows that axisymmetric solutions@with symmetryO(2)]
exist for all evenl, solutions with symmetryO exist for l
54,6,8,10,14, and solutions with symmetryI exist for 14
values ofl.

A similar result for the case whenD(H)52 can be ob-
tained as follows. IfD(H)52, the equations are

ẋ5lx1ax21bxy1cy2, ~6!

ẏ5ly1px21qxy1ry2, ~7!

involving six constantsa, b, c, p, q, r. Multiplying Eq. ~6! by
y, Eq.~7! by x and subtracting yields a cubic equation fory/x
at a fixed point, which in general has one or three solutio
Each of these solutions yields a unique solution forx andy
after substitution back into Eqs.~6! and ~7!. Generically,
there are therefore one or three branches of solutions w
D(H)52. This result requires that certain nondegener
conditions are satisfied by the six constants in Eqs.~6! and

TABLE I. Subgroups ofO(3) for even l, with corresponding
number of equationsD(H). All solutions have an additional poin
inversion symmetry.@x# denotes the integer part ofx.

GroupH Symmetry Elements D(H)

O(2) Circle ` 1
I Icosahedron 60 12 l /21@ l /3#1@ l /5#

O Cube 24 12 l /21@ l /3#1@ l /4#

T Tetrahedron 12 12 l /212@ l /3#

Dn Regularn-gon 2n 11@ l /n#

Zn Directedn-gon n 112@ l /n#
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~7!. It turns out that these conditions are satisfied for so
tions with cubic symmetryO for the six cases in which
D(O)52, so we may deduce the existence of either one
three branches of solutions with symmetryO for l
512,16,18,20,22,26. Similarly, we expect one or thr
branches of solutions with symmetryI for a further 15 values
of l, simply by determining from Table I thosel for which
D(H)52. Extending this argument to the general case
follows from Bezout’s theorem that generically, the num
ber of solution branches is odd and less than or equa
2D(H)21.

Demonstrating the existence of solutions with subma
mal symmetry such asT andDn is more difficult, since one
must check carefully that the solutions obtained do not h
greater symmetry. For example, forl 56 and l 510, D(T)
52 andD(O)5D(I )51. Seeking solutions with symmetr
T, the equations have the form~6!, ~7! but with a reflection
symmetry so thatp5b5r 50. There are three solutions, bu
one of these has symmetryO and the other two have sym
metry I and are equivalent under rotation. Therefore there
no solution with symmetryT for l 56 or l 510, as any such
solution in fact has symmetryO or I.

For solutions with dihedral symmetryDn , D(Dn)52 for
l /2,n< l , from Table I. Equations~2! then have the form

ẋ5lx1bc~0,0,0!x212bc~0,n,n!y2, ~8!

ẏ5ly12bc~0,n,n!xy, ~9!

wherex5z0 andy5Re(zn). There is an axisymmetric solu
tion y50, x52l/bc(0,0,0), and an additional solution

x52
l

2bc~0,n,n!
, y25

l2

4b2c~0,n,n!2 F12
c~0,0,0!

2c~0,n,n!G ,
provided thatc(0,0,0)/2c(0,n,n),1. Using the properties
of the Clebsch–Gordan coefficients, it has been shown@13#
that this condition is met forn5 l if l 52(mod4), since
c(0,0,0)/c(0,l ,l ) is proportional to (21)l /2 multiplied by a
positive number. Further existence results can be obta
from the properties of the Clebsch-Gordan coefficients
can be shown that

c~0,l 21,l 21!/c~0,l ,l !52~ l 21!/2,

so thatc(0,0,0)/c(0,l 21,l 21) is negative ifl 50(mod4).
Similarly,

c~0,l 22,l 22!/c~0,l ,l !5~ l 326l 213l 22!/4~2l 21!,

which is positive for l>6, and c(0,l 23,l 23)/c(0,l ,l ) is
proportional to a polynomial inl that is negative forl .10. It
follows that a solution with symmetryDl exists for l
52(mod4),l>6 @13#, a solution with symmetryDl 21 exists
for l 50(mod4),l>8, a solution with symmetryDl 22 exists
for l 52(mod4), l>10, and a solution with symmetryDl 23
exists for l 50(mod4), l>12. The constraints onl arise
from the possibility of additional symmetry, for example
solution with symmetryD4 may have symmetryO. It can be
6-2
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PATTERN FORMATION ON A SPHERE PHYSICAL REVIEW E67, 036206 ~2003!
shown that for largel, this pattern of existence of solution
continues, i.e. solutions with symmetryDl 22 j exist for l
52(mod4), and solutions with symmetryDl 22 j 21 exist for
l 50(mod4). Further details of these calculations are giv
elsewhere@14#.

Stability of solutions is determined by the eigenvalues
the Jacobian matrixJ. Earlier work @1,10# has established
that Eqs.~2! have a variational structure, so thatJ is sym-
metric and hence all eigenvalues are real; furthermore, on
the eigenvalues is aways equal to2l and the sum of the
eigenvalues is (2l 11)l @10,13#. Hence all solutions are un
stable near the bifurcation. However, there is always a s
tion in which, for l,0, one eigenvalue is positive and a
the others are negative@10#. This can be regarded as a ‘‘pre
ferred’’ solution since it can become stable at a saddle-n
bifurcation if higher-order terms are introduced into Eq.~2!.
Alternatively, a variational formulation can be used@1#, in
which l is maximized for a fixed value of the second-ord
invariant (m52 l

l uzmu2; the solution that satisfies this varia
tional problem also satisfies the above eigenvalue crite
@10#. Because of the spherical symmetry, zero eigenva
are always present. The solution withO(2) symmetry has
two zero eigenvalues and all other solutions have three
eigenvalues.

IV. SOLUTIONS FOR lÄ6, 8, 10, AND 12

This section is concerned with calculation of the existen
and stability of stationary solutions of Eq.~2! for specific
even values ofl. For l 52 the only solution is the axisym
metric state, while forl 54 there is an additional solutio
with symmetryO that is preferred, according to the vari
tional or eigenvalue criterion@1,10,13#.

For l 56, Busse@1# found four solutions, which have
symmetryO(2) ~axisymmetric!, I ~icosahedral!, O ~cubic!,
and D6 ~hexagonal!, and identified the solution with icosa
hedral symmetry as the preferred one according to the va
tional principle. These four solutions are guaranteed to e
by the general results above. Asl increases, it becomes in
creasingly difficult to verify that all possible solutions ha
been obtained. Forl 56, this can be done by investigatin
solutions with symmetryH for all possible subgroupsH in
the ‘lattice’ of subgroups. For the groupsO(2), I, and O,
D(H)51 and so a unique solution is guaranteed. ForD6 ,
D5 , D4, andT, D(H)52 and solutions can be found in eac
case; however, solutions with symmetryD4 and D5 give
only the solutions with symmetryO and I, respectively,
while solutions with symmetryT all have either symmetryO

TABLE II. Eigenvalues of solutions forl 56, divided by l.
Numbers in parenthesis are multiplicities.

Symmetry Eigenvalues

O(2) 2
7
4 ~2!, 21, 0 ~2!, 7

5 ~2!, 21
10 ~4!, 63

20 ~2!

I 21, 0 ~3!, 14
11 ~5!, 21

11 ~4!

O 221, 2
21
2 ~3!, 21, 0 ~3!, 7 ~2!, 35

2 ~3!

D6 2
105
22 , 2

35
11 ~2!, 21, 0 ~3!, 63

22 , 42
11 ~3!, 119

22 ~2!
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or I, so onlyD6 gives a new solution. For the subgroupD3 ,
D(H)53 and there are seven solutions~in agreement with
the above formula 2D(H)21), but these are just copies of th
solutions with symmetryI, O, D6 and O(2). Similarly,
within the four-dimensional space ofD2, there are 2421
515 solutions, but explicit computation verifies that the
are no new solutions. Finally, solutions with symmetryZn ,
or no symmetry, can be ruled out since they are nongen
@13#.

It is straightforward to find the eigenvalues of the 1
313 matrixJ for each solution, sinceJ divides into blocks
that are no larger than 333. The eigenvalues and their mu
tiplicities are shown in Table II. For the axisymmetric sol
tion, the eigenvalues are simply2l and @1
22c(0,n,n)/c(0,0,0)#l for n51, . . . ,l , with multiplicity 2.
One eigenvalue has multiplicity 4, sincec(0,2,2)
5c(0,6,6). The other solutions also have eigenvalues w
high multiplicity, up to 5 in the case ofI.

The solution with symmetryI has only one positive eigen
value for l,0, while all others have at least three. Hen
the I solution can become stable at a saddle-node bifurca
if cubic terms are included, whereas the other solutions
quire more than one bifurcation to become stable. A poss
bifurcation diagram illustrating this scenario is shown in F
1. Note that only a single eigenvalue can change sign
saddle-node bifurcation. On this basis, theI solution can be
regarded as preferred. This supposition is given strong s

FIG. 1. Possible bifurcation diagram for the casel 56. Solid
~dashed! lines denote stable~unstable! solution branches, and th
vertical axis is a qualitative measure of the amplitude of the so
tion. The numbers of positive and negative eigenvalues on e
branch are shown.

FIG. 2. Stationary solutions of Eq.~2! with icosahedral symme-
try for l 56, l 510, andl 512.
6-3
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TABLE III. Solutions for l 510, with the number of equationsD(H) and the number of positive eigen
valuesn1 whenl,0.

Symmetry I O(2) O D6 D7 D8 D9 D10 D4 D3

D(H) 1 1 1 2 2 2 2 2 3 4
n1 1 7 2 3 9 6 3 8 9 7
n-

fo
h
is

ar
ng

e
en

lu

-

u
c
e

l-
lu
e

it
h
n

r
th

n

ie

es

e-

The

For

h

try

ry

e
e

ons
he
ed-
n-
ion
tion

nd

the

ble
port by two recent numerical simulations of reactio
diffusion equations on the surface of a sphere@7,9#, both of
which find a stable solution with icosahedral symmetry
l 56. This question is examined further in Sec. V below. T
solution with icosahedral symmetry is shown in Fig. 2. Th
solution hasz052l/55, z55A77l/605 and all otherzi are
zero. In the example of spherical shell convection, the d
regions correspond to either warm rising fluid or cold sinki
fluid, depending on the sign ofb in Eq. ~2!.

For l 58, the equivariant branching lemma guarante
axisymmetric and cubic solutions, and the general argum
on solutions with symmetryDn give a solution with symme-
try D7. Direct computation reveals that there are also so
tions with symmetryD6 , D5 , D4, and D3. There are no
solutions with symmetryI or T. For l 58 there is a degen
eracy in the coefficients, withc(0,5,5)5c(0,6,6) and
c(1,5,6)50, these two equations being related by a rec
rence relation of the coefficients. This degeneracy influen
the eigenvalues of the solutions. The solutions with symm
try D7 , D6 , D5 , D4, andD3 all have seven zero eigenva
ues, one positive eigenvalue and nine negative eigenva
for l,0. It would therefore be necessary to include high
order terms to determine the preferred solution forl 58.

When l 510, solutions of Eq.~2! with symmetryO(2),
O, I exist, since these groups haveD(H)51. The other gen-
eral results above indicate the existence of solutions w
symmetryD10 andD8, and nonexistence of a solution wit
symmetryT. Calculations show that there are also solutio
with symmetryD9 , D7 , D6 , D4, and D3. These calcula-
tions follow the same general method as forl 56 and l
58; for each subgroupH of O(3), D(H) is obtained from
Table I and the reduced set ofD(H) equations is solved. Fo
submaximal subgroups, care must be taken to check whe
the solution obtained has greater symmetry thanH; for ex-
ample, when seeking solutions with symmetryD5, only the
solution with symmetryI is found. Once a solution has bee
found, the eigenvalues ofJ are calculated for the full system
of 2l 11 equations. Some of the calculations were carr
out using the symbolic algebra packageMAPLE. The solu-
tions are listed in Table III, with the number of eigenvalu
that are positive whenl,0. The I solution has only one
positive eigenvalue forl,0 and so is regarded as the pr
ferred solution. This solution is shown in Fig. 2.
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For l 512, only the solutions with symmetryO(2) andI
are guaranteed by the equivariant branching lemma.
general result above for the caseD(H)52 shows that there
are either one or three solutions with cubic symmetryO;
explicit computation of the coefficients in Eqs.~6! and ~7!
shows that in fact there are three distinct cubic solutions.
the other groups withD(H)52, solutions with symmetry
D8 , D9 , D10 and D11 exist but there are no solutions wit
symmetryD7 or D12. Solutions with symmetryT were in-
vestigated by restricting attention to solutions with symme
D2 that are also invariant under two consecutivep/2 rota-
tions about orthogonal axes. The solutions with symmetryO
andI were found, but also a distinct solution with symmet
T. Thus, l 512 is the lowest even value ofl for which a
solution with symmetryT exists. A total of 14 solutions were
found for l 512; these are listed in Table IV. Again, th
solution with symmetryI is preferred, since it has only on
positive eigenvalue forl,0.

V. NUMERICAL SIMULATIONS

This section describes the results of numerical simulati
of a model pattern-forming partial differential equation. T
aim of the simulations is to test the hypothesis of the prec
ing section that the solution with only one positive eige
value for l,0 becomes stable at a saddle-node bifurcat
and is the solution observed. The model chosen is a varia
of the Swift-Hohenberg model,

]w

]t
5@r 2~11¹2!2#w1sw22w3. ~10!

This equation is widely used as a model for convection a
other pattern-forming systems@15,16#. The basic statew
50 is potentially unstable when the parameterr becomes
positive, ands represents the symmetry breaking between
inside and outside of the sphere. The growth ratel of spheri-
cal harmonics of degreel is

l5r 2@12 l ~ l 11!/R2#2, ~11!

where R is the radius of the sphere, so the most unsta
mode has degreel if R25 l ( l 11), in which case there is
-
.

TABLE IV. Solutions for l 512, with the number of equationsD(H) and the number of positive eigen
values whenl,0. Multiple entries in the final row indicate multiple solutions with the same symmetry

Symmetry I O(2) O D8 D9 D10 D11 T D5 D6 D4

D(H) 1 1 2 2 2 2 2 3 3 3 4
n1 1 7 4,4,7 5 9 2 7 10 7 3 9,10
6-4
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PATTERN FORMATION ON A SPHERE PHYSICAL REVIEW E67, 036206 ~2003!
instability for r .0. Note that for largel the relationship
betweenR and l is approximatelyR5 l 11/2.

The simulations use a pseudospectral method, work
with the spectral coefficientszlm(t) defined by

w5(
l 50

l 5L

(
m52 l

l

zlm~ t !Yl
m~u,f!. ~12!

The number of modesL used is chosen to be at least thr
times the value ofl with the maximum growth rate. The
linear terms in Eq.~10! are obtained simply by multiplying
zlm by l given by Eq.~11!, and the nonlinear terms are foun
by transforming to a uniformly spaced grid in (u,f) on the
surface of the sphere, evaluatingw2 andw3 and then trans-
forming back to the spectral coefficients. The transfor
make use of theSPHEREPACKpackage@17#. The time step-
ping of Eq. ~10! is carried out using the exponential tim
differencing method@18#, which ensures that the exponenti
growth is handled exactly and allows much larger time st
than most standard methods. Each simulation employ
small-amplitude random initial condition.

To investigate patterns forl 56, several simulations with
R56.5, s50.2 were carried out. Forr 50.1, all random ini-
tial conditions lead to a stable solution with icosahedral sy
metry, identical to that shown in Fig. 2. By choosing diffe
ent initial conditions, with particular symmetries, the oth
three solutions shown in Table II can be found, but these
all unstable to small perturbations. These results are con
tent with the bifurcation diagram sketched in Fig. 1, in whi
the branch of solutions with icosahedral symmetry tu
round at a saddle-node bifurcation, giving a stable branc
solutions extending into the region wherel.0. This branch
of solutions can be tracked back numerically into the reg
wherer ,0 ~and hencel,0) as far asr 520.0023, before
the solution collapses to the zero state, indicating that
saddle-node bifurcation occurs near this point. Whenr is
increased tor 50.2, random initial conditions lead to eithe
the icosahedral solution or the axisymmetric state, so b
these solutions are stable, and forr 50.3 most initial condi-
tions give the axisymmetric solution. This transition from
icosahedral solution with a pattern of spots to an axisymm
ric striped pattern asr increases, with an interval of bistabi
ity, is closely analogous to the transition from hexagona
striped patterns in planar pattern formation~see, for example
Ref. @16#!.

FIG. 3. Numerical solutions of Eq.~10! for l 58, with r
50.15, with symmetryD6 ~left! andO(2) ~right!.
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For l 58, the theoretical results of Sec. IV based on t
quadratic truncation do not give a preferred solution, sin
the quadratic terms do not resolve the pattern degenerac
this case. Numerical simulations of Eq.~10! with R58.5, s
50.2, r 50.1 show a pattern withD6 ~hexagonal! symmetry,
with 20 spots on the surface of the sphere. Forr 50.15, both
the solution withD6 symmetry and the axisymmetric solu
tion are stable; these two solutions are shown in Fig. 3.
r 50.2, further stable solutions are found, depending on
initial conditions. These include, amongst others, a doub
spiral pattern and a pattern with the symmetry of a tennis
~Fig. 4!. These two solutions do not have the point inversi
symmetry inherent in all even-l states, and so are compose
of a mix of even-l and odd-l modes.

For l 510, simulations withs50.2, R510.5, and r
50.1 generally lead to the solution with icosahedral symm
try shown in Fig. 2. However, a minority of initial condition
give an axisymmetric state, so it appears that both soluti
are stable. For largerr, many different types of solution ar
stable. Forr 50.2 these include the axisymmetric state,
double spiral similar to that of Fig. 4, and a single spi
pattern similar to that described by Zhanget al. @3# in their
simulations of convection in a spherical shell.

Simulations withs50.2, R512.5, andr 50.1 ~so that the
most unstable mode isl 512) show either the icosahedra
solution shown in Fig. 2, or the axisymmetric solution, or
solution with cubic symmetry, shown in Fig. 5, depending
the initial conditions. Asr is increased, many more stab
solutions are found, involving different arrangements of m
andering stripes over the surface of the sphere. These inc
a double spiral similar to that found forl 58 andl 510, and
a single spiral, shown in Fig. 5.

VI. CONCLUSIONS

In conclusion, this work represents a study of the ex
tence and stability of solutions for pattern formation on

FIG. 4. Solutions of Eq.~10! for l 58, with r 50.2, showing a
double-spiral pattern~left! and a tennis ball pattern~right!.

FIG. 5. Patterns in Eq.~10! for l 512. Cubic solution (r 50.1,
left! and spiral solution (r 50.2, right!.
6-5
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P. C. MATTHEWS PHYSICAL REVIEW E67, 036206 ~2003!
sphere for all evenl up to l 512. The bifurcation equations
to quadratic order, do not depend on the details of the ph
cal application. All solutions found in the quadratic trunc
tion are unstable, but a ‘‘preferred’’ solution can be identifi
using either a variational criterion or, equivalently, by det
mining which solution has only one positive eigenvalue. R
markably, forl 56, l 510, andl 512, a solution with icosa-
hedral symmetry is preferred, according to either
variational or eigenvalue criterion. These three solutions
shown in Fig. 2. Numerical simulations of a Swif
Hohenberg model confirm that these icosahedral patterns
indeed stabilized by higher-order terms, and show tha
wide variety of more complicated patterns can be stable
iol
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ther from onset. However, these higher-order terms are
tem dependent, so other pattern-forming equations may
different behavior.

The preference for icosahedral patterns is of considera
interest, since a very large number of ‘‘spherical’’ viruses a
known to have icosahedral structures~see, for example, Ref
@19#!, as first suggested by Crick and Watson@20#. For ex-
ample, the bean pod mosaic virus and bacteriophagefX174
both have the appearance of thel 56 solution of Fig. 2,
while the turnip yellow mosaic virus and bacteriophage M
are similar to thel 510 solution, with 32 prominent surfac
features. A further natural example of icosahedral symme
is in microorganisms known as radiolaria@21#.
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